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Dynamic critical behavior of failure and plastic deformation in the random fiber bundle model

S. Pradhan,* P. Bhattacharyya,† and B. K. Chakrabarti‡

Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
~Received 8 February 2002; revised manuscript received 3 April 2002; published 23 July 2002!

The random fiber bundle~RFB! model, with the strength of the fibers distributed uniformly within a finite
interval, is studied under the assumption of global load sharing among all unbroken fibers of the bundle. At any
fixed value of the applied stresss ~load per fiber initially present in the bundle!, the fractionUt(s) of fibers
that remain unbroken at successive time stepst is shown to follow simple recurrence relations. The model is
found to have stable fixed pointU!(s) for applied stress in the range 0<s<sc , beyond which total failure
of the bundle takes place discontinuously@abruptly fromU!(sc) to 0#. The dynamic critical behavior near this
sc has been studied for this model analyzing the recurrence relations. We also investigated the finite size
scaling behavior nearsc . At the critical points5sc , one finds strict power law decay~with time t! of the
fraction of unbroken fibersUt(sc) ~ast→`). The avalanche size distribution for this mean-field dynamics of
failure ats,sc has been studied. The elastic response of the RFB model has also been studied analytically for
a specific probability distribution of fiber strengths, where the bundle shows plastic behavior before complete
failure, following an initial linear response.

DOI: 10.1103/PhysRevE.66.016116 PACS number~s!: 62.20.Mk, 05.50.1q, 05.70.Ln, 05.65.1b
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I. INTRODUCTION

A typical relaxational dynamics has been observed i
strained random fiber bundle~RFB! model @1–8# whereN
fibers are connected in parallel to each other and clampe
their two ends and the strength of the individual fibers h
some particular distribution~white, Gaussian, or otherwise!.
In the global load-sharing approximation@1,2#, at any in-
stant, the surviving fibers all share equally the external lo
~irrespective of their proximity etc. of the fiber to failed fi
bers etc.!. Initially, after the loadF is applied on the bundle
a fraction of the fibers having strength less than the app
stresss5F/N fail immediately. After this, the total load on
the bundle redistributes globally as the stress is transfe
from broken fibers to the remaining unbroken ones. T
redistribution causes secondary failures which in gen
causes further failures and so on. After some relaxation t
t, which depends ons, the system ultimately becomes stab
if the applied stresss is less than or equal to a critical valu
sc , and beyond which (s.sc) all the fibers break and th
bundle fails completely. Although the local load shari
might be more realistic, we study here the global load sh
ing model because of its simplicity. The study of the scal
properties of the dynamics of the fiber bundle model syste
is expected to be extremely useful in analyzing the statis
of fracture and breakdown in real materials, including ear
quakes@9,10#.

In this paper, we report on the critical dynamics of t
RFB model in the global load-sharing case, assuming u
form distribution of threshold strength of the fibers~up to a
cutoff!, in particular at the critical pointsc . In a previous
paper@11#, we have solved the dynamics of the model, sho
ing a novel critical behavior as the stresss approaches a
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certain valuesc ; we had derived there the expressions
the breakdown susceptibilityx and the relaxation timet un-
der a stresss ,sc and showed that both the quantities d
verge following power laws ass approachessc from below.
Here we define an order parameter for the transition from
state of partial failure of the bundle to a state of total failu
and also show that at the critical stresssc , the dynamics
follows a precise and strict power law. From the finite si
dependence ofsc and the order parameter we have identifi
the correlation length exponent of the system. We have s
ied the avalanche size statistics in the model as well. C
sidering a modified~uniform but shifted from the origin!
distribution of fiber strengths we have studied analytica
the elastic-plastic deformation characteristics@4# of the RFB
model.

II. THE MODEL

The RFB model consists ofN elastic fibers clamped a
two ends~Fig. 1!, where the failure stress of the individua
fibers are distributed randomly and uniformly in the interv
between 0 and 1~white or uniform distribution; Fig. 2!. Glo-
bal load sharing is assumed; i.e., the applied load on
bundle is equally shared among all the existing intact fibe
This assumption neglects ‘‘local’’ fluctuations in stress~and
its redistribution! and renders the model as a mean-field o
We work with the fractionUt [Nt /N; Nt being the number
of fibers remaining intact aftert time-steps andNt505N.

With the application of any small loadF (5s N, with s
!1) on the bundle, an initial stresss ~load per fiber! sets in.
At this first step therefore,s N number of fibers break, leav
ing NU1(s)5N(12s) unbroken fibers. After this, the ap
plied force is redistributed uniformly among the remaini
intact fibers and the redistributed stress becom
F/@NU1(s)#5s/(12s). Some more fibers, for which th
strengths are below the value of the redistributed stress,
thus leavingNU2(s)5N@12s/(12s)# unbroken fibers.
This in turn increases the redistributed stress and indu
©2002 The American Physical Society16-1
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further failures. Consequently, as the stress per fibers(t) at
time t is given byF/NUt5s/Ut and the surviving fraction is
given by 12s/Ut ~see Fig. 2!, Ut(s) follows a simple re-
currence relation

Ut11~s!512
s

Ut~s!
. ~1!

III. BREAKING DYNAMICS OF THE RFB MODEL

The recurrence relation~1! has the form of an iterative
mapUt115Y(Ut). Its fixed pointU! is defined by the rela-
tion U!5Y(U!) and from Eq.~1! one gets

U!~s!5
1

2
6~sc2s!1/2, sc5

1

4
. ~2!

The quantityU! must be real valued as it has a physic
meaning: it is the fraction of the original bundle that rema
intact under a fixed applied stresss when the applied stres
lies in the range 0<s<sc . For s.sc the map does no
have a real-valued fixed point and as can be seen from

FIG. 1. The RFB model consists ofN fibers. The bundle is
subjected to a loadF. Assuming linear elasticity, with identica
elastic constantk for each fiber up to the breaking, the loadF can
be expressed asNkd, whered denotes the strain for the fibers un
any of them breaks. The breaking strengths of the fibers are
sumed to be random, as discussed later.

FIG. 2. The simplest model considered here assumes unifo
random distribution or white distributionr(s) for the strength of
the fibers up to a~normalized! cutoff strength. This distribution
gives the recurrence relation~1!.
01611
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~1!, the dynamics never stops untilUt50 when the bundle
breaks completely. Since it requires thatudY/dUuU!(s),1
for a fixed pointU!(s) to be stable, for each value ofs the
value of U! with the positive sign in Eq.~2! represents a
stable fixed point~or attractor! while the value ofU! with
the negative sign in Eq.~2! represents an unstable fixed poi
~or repeller!. It may be noted that the quantityU!21/2 be-
haves like an order parameter that determines a trans
from a state of partial failure (s<sc) to a state of total
failure (s.sc):

O[U!21/25~sc2s!b, b5 1
2 . ~3!

IV. CRITICAL BEHAVIOR

A. For sËsc

To study the dynamics away from criticality (s→sc from
below!, we replace the recurrence relation~1! by a differen-
tial equation

2
dU

dt
5

U22U1s

U
. ~4!

Close to the fixed point we writeUt(s)5U!(s)1e
which, following Eq.~4!, gives@11#

e5Ut~s!2U!~s!'exp~2t/t!, ~5!

wheret5 1
2 @ 1

2 (sc2s)21/211#. Approachingsc from below
we get

t}~sc2s!2a, a5 1
2 ~6!

as the relaxation time of the model and it is found to diver
following a power law ass→sc from below. Although we
have used here the continuum-time version~4! of the recur-
rence relation to evaluate the relaxation time (t), we have
checked numerically as well from the discrete-time rec
rence relation~1! and obtained the same exponent value.

One can also consider the breakdown susceptibilityx,
defined as the number~fraction! of fibers that break due to a
infinitesimal increment of the applied stress@11#

x5UdU!~s!

ds U5 1

2
~sc2s!2g, g5

1

2
~7!

from Eq. ~2!. Hencex too diverges as the applied stresss
approaches the critical valuesc5 1

4 . Such a divergence inx
had already been observed in the numerical measurem
@5,6#.

B. At sÄsc

At s5sc the fraction of fibers surviving isU!(sc)5 1
2

and udY/dUuU!(sc)51 which suggests that the system w

take infinite time to reach the fixed point atsc . From the
recurrence relation~1! it can be shown that this decay of th
fractionUt(sc) of unbroken fibers that remain intact at tim
t follows a simple power law:

s-

ly
6-2
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Ut5
1

2 S 11
1

t11D , ~8!

starting fromU051. For larget (t→`), this reduces toUt
21/2}t21; a simple but strict power law.

V. FINITE SIZE EFFECTS AND CORRELATION LENGTH
EXPONENT

For a finite bundle ofN fibers, the recurrence relation~1!
will be replaced by

Nt11~s!5N2 b N2s

Nt
c, ~9!

wherebxc denotes the greatest integer less than or equalx.
Here the fixed point is obtained whenNt115Nt5N! and the
value ofN! is bounded by the relation

NF1

2
1S 1

4
2s D 1/2G<N!,

1

2
~N11!1F1

4
~N11!22N2sG1/2

,

~10!

which clearly depends on the finite size of the system. C
sequently the effective critical pointsc(N) for the finite RFB
model is bounded as

1

4
<sc~N!,

1

4 F11
1

NG2

. ~11!

It follows from Eq. ~10! that, atsc5 1
4 , the fixed point value

N! for a finite bundle decays with the initial bundle sizeN
following a power law

Nsc51/4
! 2

N

2
;N1/2. ~12!

Since the quantityU!21/2 in Eq.~3! behaves like an orde
parameter for a phase transition, the corresponding qua
in a finite bundle ofN fibers would be

N!2
N

2

N
[UN

! 2
1

2
. ~13!

Expressing the correlation length asj}(sc2s)2n in the
infinite system and combining it with Eq.~3! for a finite size
system~wherej;N), the finite size scaling behavior can b
written as

UN
! ~sc!2 1

2 ;N2b/n. ~14!

Since b51/2, as obtained earlier from Eq.~3!, we get n
51 by comparing Eq.~14! with Eq. ~12!.

VI. AVALANCHE SIZE DISTRIBUTION

We now study the avalanche size distribution in th
mean-field model. If one considers strictly uniform streng
distribution of the fibers in this model, one cannot meanin
01611
-
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fully approach the failure point by breaking the weakest fib
and looking for the avalanches of successive failures of
fibers, following the avalanche definition of Hemmeret al.
@2,3#. If we apply this definition in the above~restricted!
model, we will end up with only two distinct sizes of ava
lanches: (N/2) avalanches of unit size and one avalanche
size (N/2). This will occur due to the perfectly uniform
strength distribution of the fibers~with the successive
strength of fibers differing by 1/N). To work therefore with a
more general definition of avalanche, we increase the ex
nal load on the bundle steadily such that the external loaF
increases by an equal amount (dF5Nds) at each step~cf.
@7#!. This ensures the bimodal, yet decreasing, distribut
function mentioned above to become a smooth~decaying!
function. Operationally also, this procedure is quite comm
and can be applied to different cases and to bundles w
different types of strength distributionr(s) of fibers. Here,
the fraction of fibersm which eventually fail due to this
increase in load or stress may be considered as the avala
size:

m5
dM

ds
; M512U!~s!. ~15!

With U!(s) from Eq. ~2! we get

sc2s;m22. ~16!

If we now define the avalanche size probability distrib
tion by P(m), then P(m)Dm measuresDs, the number of
times one has to changes ~by ds) to get a changeDm along
the m versuss curve in Eq.~16!. In other words,

P~m!5
ds

dm
;m2h, h53. ~17!

This mean-field result forP(m) ~power law decay with
exponenth53) is obtained here for global load sharing a
uniform fiber strength distribution when the external load
increased by a fixed amount. We have checked this re
numerically for differentds values (51/N) for bundles with
50 000 fibers having both strictly uniform and uniform-o
average strength distributions. The results are shown in
3. The earlier numerical results of Morenoet al. @7# for
Weibull type distribution of fiber strength also confirms th
relation ~16!, which implies that the cumulative distributio
decreases with avalanche sizem asm22, in agreement with
Eq. ~17!.

This result~17! for the avalanche size distributionP(m)
is therefore valid for other distributions of fiber strength~cf.
@7#! when the avalanche size is defined through Eq.~15!. If
one looks for the statistics of avalanches initiated by bre
ing the next weakest fiber in bundles with uniform-o
average fiber strength distribution, as in Hemmeret al. @2,3#,
then one getsh55/2. This is shown in the inset of Fig. 3
where the avalanches are defined in both ways: with fi
increase ins ~giving h53.0) and by breaking the nex
weakest fiber~giving h52.5). The difference in the abov
exponent values therefore originates from different ways
6-3



-

or
n,
d

er
et

S. PRADHAN, P. BHATTACHARYYA, AND B. K. CHAKRABARTI PHYSICAL REVIEW E 66, 016116 ~2002!
FIG. 3. The log-log plot of the average ava
lanche size distributionsP(m) against m for
N550 000 withds51/N for strictly uniform fi-
ber strength distribution~cross! and uniform-on-
average fiber strength distribution~averaged over
501 bundle realizations; plus!. The dotted line has
a slopeh523.0, representing Eq.~17!. The inset
shows the avalanche size distributions f
uniform-on-average fiber strength distributio
when ~a! the external load increases by a fixe
amountds51/N ~plus! and ~b! the avalanches
are triggered by breaking the next weakest fib
~star!. The dotted and dashed lines in the ins
correspond toh523.0 and h522.5, respec-
tively.
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defining the avalanches; in our method of defining a
lanches here, the external load on the bundle increases
formly, while in the other method the external load increa
has intrinsic fluctuations due to the randomness of the fi
strengths and the restriction on initiating the avalanches
breaking only the next weakest fiber.

VII. PLASTIC DEFORMATION AND STRESS-STRAIN
RELATION

One can now consider a slightly modified strength dis
bution of such a fiber bundle, showing plastic-deformat
characteristics@1,4#. For this, we consider a RFB streng
distribution, having a lower cutoff. Until failure of any of th
fibers ~due to this lower cutoff!, the bundle shows linea
elastic behavior. As soon as the fibers start failing, the str
strain relationship becomes nonlinear. The dynamic crit
behavior remains essentially the same and the static~fixed
point! behavior shows elastic-plastic deformation before r
ture of the bundle.

Here the fibers are elastic in nature having identical fo
constantk ~see Fig. 1! and the random fiber strengths di
tributed uniformly in the interval@sL,1# with sL.0; the
normalizssed distribution of the threshold stress of the fib
thus has the form~see Fig. 4!:

FIG. 4. The fiber breaking strength distributionr(s) considered
for studying elastic-plastic deformation behavior of the RFB mod
This distribution gives the recurrence relation~19!.
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r~s!5H 0, 0<s<sL

1

12sL
, sL,s<1J . ~18!

For an applied stresss<sL none of the fibers break
though they are elongated by an amountd5s/k. The dy-
namics of breaking starts when applied stresss becomes
greater thansL . Now, for s.sL the fraction of unbroken
fibers follows a recurrence relation@for r(s) as in Fig. 4#:

Ut11~s!512F F

NUt~s!
2sLG 1

12sL

5
1

12sL
F12

s

Ut~s!G , ~19!

which has stable fixed points:

U!~s!5
1

2~12sL! F11S 12
s

sc
D 1/2G ,

sc5
1

4~12sL!
. ~20!

The RFB model now has a critical pointsc51/@4(12sL)#
beyond which total failure of the bundle takes place. T
above equation also requires thatsL<1/2 ~to keep the frac-
tion U!<1). As one can easily see, the dynamics ofUt(s)
for s,sc and also ats5sc remains the same as discuss
in the earlier section. At each fixed point there will be
equilibrium elongationd(s) and a corresponding stressS
5U!kd(s) develops in the system~bundle!. This d(s) can
be easily expressed in terms ofU!(s). This requires the
evaluation ofs!, the internal stress per fiber developed at t
fixed point, corresponding to the initial~external! stresss
(5F/N) per fiber applied on the bundle when all the fibe
were intact. From the first part of Eq.~19!, one then gets~for
s.sL)

l.
6-4
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U!~s!512
s!2sL

~12sL!
5

12s!

12sL
. ~21!

Consequently,

kd~s!5s!512U!~12sL!. ~22!

It may be noted that the internal stresssc
! is universally

equal to 1/2~independent ofsL) at the failure points5sc
of the bundle. This finally gives the stress-strain relation
the RFB model:

S5H kd, 0<s<sL

kd~12kd!/~12sL!, sL<s<sc

0, s.sc

J . ~23!

This stress-strain relation is schematically shown in Fig
where the initial linear region has slopek ~the force constan
of each fiber!. This Hooke’s region for stressS continues up
to the strain valued5sL /k, until which no fibers break
@U!(s)51#. After this, nonlinearity appears due to the fa
ure of a few of the fibers and the consequent decreas
U!(s) ~from unity!. It finally drops to zero discontinuousl
by an amountsc

!U!(sc)51/@4(12sL)#5sc at the break-
ing point s5sc or d5sc

!/k51/2k for the bundle. This in-
dicates that the stress drop at the final failure point of
bundle is related to the extent (sL) of the linear region of the
stress-strain curve of the same bundle.

Here, the plasticity~nonlinearity! in the response of the
bundle comes naturally from partial failure of the fibers~and
the consequent redistribution of stress among the surviv
fibers!, after the assumed linear region until the lower thre
old sL of failure ~18!. The total failure of the bundle is agai

FIG. 5. Schematic stress (S)-strain (d) curve of the bundle
~shown by the solid line!, following Eq.~23!, with the fiber strength
distribution ~18! ~as shown in Fig. 4!.
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discontinuous here and the entire nonlinear response cha
teristics are analytically calculable in this simple model.

VIII. SUMMARY AND CONCLUSIONS

We have reported here an analytic study of the failu
dynamics and the consequent plastic deformation chara
istics of the random fiber bundle model having the prope
of global load sharing. This has been done here for unifo
strength distributionr(s) of fibers in the bundle~up to a
cutoff!. As mentioned before, this has been possible due
the inherent mean-field nature of the model. The recurre
relation ~1! captures essentially all the intriguing features
the dynamics. We found that both the breakdown susce
bility x and the relaxation timet diverge as the applied
stresss approaches its global failure pointsc (51/4 for the
uniform strength distribution as shown in Fig. 2! from below,
with the same exponent valueg5a51/2. The critical dy-
namics of the model follows a strict power law decay ats
5sc : Ut21/2}t21. Though we have identifiedO[U!(s)
21/2 as the order parameter~with exponentb51/2) for the
continuous transition in the model, unlike convention
phase transitions it does not have a real-valued existence
s.sc . From finite-size scaling study, we see that there i
correlation length which diverges with an exponentn51, as
sc is approached from below. The avalanche size distri
tion P(m) for this mean-field dynamics of the RFB model
given byP(m);m2h, h53. This has been confirmed her
numerically. As mentioned before, this result is valid for t
avalanche sizes defined through Eq.~16!, where the externa
load on the bundle increases uniformly until the total failu
at sc . The present as well as the earlier numerical res
@5,7,11# all confirm that the analytic results for the exponen
a, g, andh @for t,x, andP(m), respectively# are not nec-
essarily restricted to the uniform distribution of fiber streng
~assumed here! and are more generally valid. The model al
shows realistic plastic deformation behavior with a shift
~by sL , away from the origin! uniform distribution of fiber
strengths. The stress-strain curve for the model clearly sh
three different regions: an elastic or linear part~Hooke’s re-
gion! when none of the fibers break@U!(s)51#, a plastic or
nonlinear part due to the successive failure of the fib
@U!(s),1#, and then finally the stress drops suddenly@due
to the discontinuous drop in the fraction of surviving fibe
from U!(sc) to zero# at the bundle failure point ats5sc

@51/@4(12sL)# for the failure strength distribution~18!#.
Simplicity of the model and consequently of the recurren
relation for the breaking dynamics allows it to have exa
analytic results for all its static and dynamic behaviors
breaking and the resulting plasticity.
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